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STRESS–STRAIN RELATIONSHIP FOR PERIODIC LOADING

UDC 621:539.43.001.24V. I. Kapustin1 and V. M. Stepanov2

A mechanical model for the inelastic periodic deformation of a material is proposed. According to
the model, axial plastic strain results from plastic shears in four planes of maximum shear stresses.
The plastic shears in these planes are determined by the deformation strength of the material, which
is assumed to be different in different systems of sites and depends on the deformation direction.
Deformation strength characteristics of materials are proposed. The model and known deformation
strength characteristics allow an analytical description of the strain hardening and softening of ma-
terials. An example of calculating strain curves of a hypothetical material under soft loading is given.
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Analytical stress–strain relations for periodic loading are of special significance for developing fatigue failure
criteria of materials. Existing theoretical concepts on the stress–strain relationship used to study fatigue cannot
be considered adequate even for uniaxial loading. It is also obvious that purposeful development of a mechanical
criterion of fatigue failure is possible only if there is a material model that describes periodic loading in the context of
plasticity theory and complex loads. The model is required to develop programs for systematic and comprehensive
studies of the fatigue damage accumulation and to represent experimental data.

In the present paper, the process of cyclic loading is considered in the context of the phenomenological theory
of plasticity using a mechanical scheme of material deformation [1–3]. According to the model of [1–3], the material
is elastically isotropic and statistically homogeneous but consists of anisotropic elements with substantially different
deformation strengths.

1. We decompose an arbitrary stress state into an equal triaxial tension and two unlike biaxial stress states:
⎡
⎣

σx 0 0
0 σy 0
0 0 σz

⎤
⎦ = σ0

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ + (σ0 − σy)

⎡
⎣

1 0 0
0 −1 0
0 0 0

⎤
⎦ + (σ0 − σz)

⎡
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎦ .

Here σ0 = (σx + σy + σz)/3 is the hydrostatic stress.
In a similar manner, we write the strain tensor as the sum of tensors:

⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ = ε0

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ + (ε0 − εy)

⎡
⎣

1 0 0
0 −1 0
0 0 0

⎤
⎦ + (ε0 − εz)

⎡
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎦ , (1)

where ε0 = (εx + εy + εz)/3.
According to Hooke’s law, for an isotropic material, the strain tensor in the principal axes coincident with

the principal stress axes is written as
⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

σ0(1 − 2ν)
E

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦+

(σ0 − σy)(1 + ν)
E

⎡
⎣

1 0 0
0 −1 0
0 0 0

⎤
⎦ +

(σ0 − σz)(1 + ν)
E

⎡
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎦ .
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Under the action of external forces, a solid body accumulates potential elastic strain energy Π. In the absence
of losses, the work done to deform an elementary material volume is equal to the potential elastic strain energy Π.

The potential elastic strain energy Π of the elementary volume of an isotropic material can be written as

Π =
3
2

σ2
0

E
(1 − 2ν) +

1 + ν

E

[
(σ0 − σy)2 + (σ0 − σy)(σ0 − σz) + (σ0 − σz)2

]
. (2)

The terms in expression (2) are fractions of the potential energy related to the hydrostatic and unlike loads in two
orthogonal directions.

We consider the potential energy (2) for uniaxial stress states that occur in standard fatigue specimens
loaded in the x direction, and decompose it into components due to equal triaxial tension and biaxial stress states
for an anisotropic material:

Π =
3
2

σ2
0

E
(1 − νxy − νxz) +

3
2

σ2
0

E
(1 + νxy) +

3
2

σ2
0

E
(1 + νxz). (3)

Introducing the corresponding notation, we obtain

Π = Π0 + Πxz + Πxy.

Here Π0 is the potential energy related to the hydrostatic component of the loading, Πxz and Πxy are the energies
due to distortion of the elementary parallelepiped for the plane unlike stress state – extension in the x direction
and compression in the z and y directions, respectively.

Expression (3) implies that the components of the total strain energy depend on Poisson’s ratios νxy and νxz.
The components of the potential energy Πxy and Πxz related to the distortion vanish for Poisson’s ratios νxy = −1
and νxz = −1, respectively.

Deformation with zero value of the potential energy due to the distortion [Πxy or (and) Πxz] can be inter-
preted as deformation without elastic shear resistance. In this case, the corresponding Poisson’s ratios in expres-
sion (3) should be equal to −1.

In the case of inelastic deformation, where the longitudinal plastic strain is the result of slipping over the
planes of maximum shear stresses τxy and τyx, the equality νxy = −1 should hold; for slipping over the planes of
maximum shear stresses τxz and τzx, the equality νxz = −1 should hold.

Using the well-known representation of the total-strain tensor for inelastic deformation in the form of a sum,
we obtain ⎡

⎣
εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

⎡
⎣

εe
x 0 0
0 εe

y 0
0 0 εe

z

⎤
⎦ +

⎡
⎣

εp
x 0 0
0 εp

y 0
0 0 εp

z

⎤
⎦ . (4)

In expression (4) and below, the superscripts e and p denote the elastic and plastic components of the total-strain
tensor, respectively. Similarly to expression (1), the plastic-strain tensor components are written as

⎡
⎣

εp
x 0 0
0 εp

y 0
0 0 εp

z

⎤
⎦ = εp

0

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ + (εp

0 − εp
y)

⎡
⎣

1 0 0
0 −1 0
0 0 0

⎤
⎦ + (εp

0 − εp
z)

⎡
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎦ ,

where εp
0 = (εp

x + εp
y + εp

z)/3.
For ideal plastic flow, the volume change due to plastic strains of the material vanishes: εp

x + εp
y + εp

z = 0
(εp

y = −µxyε
p
x and εp

z = −µxzε
p
x), which is equivalent to the equality εp

x(1 − µxy − µxz) = 0. This implies that

εp
x = 0 or 1 − µxy − µxz = 0. (5)

Here µxy and µxz are the coefficients of the transverse plastic strains.
Thus, the components of the plastic-strain tensor are related by the equation

⎡
⎣

εp
x 0 0
0 εp

y 0
0 0 εp

z

⎤
⎦ = εp

x

⎧
⎨
⎩µxy

⎡
⎣

1 0 0
0 −1 0
0 0 0

⎤
⎦ + µxz

⎡
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎦
⎫
⎬
⎭ .

The problem of determining the plastic strains is indeterminate since the last equation in (5) has infinite number
of solutions.
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Fig. 1. Rheological model of the material.

2. The model of an elastically isotropic material with different deformation strengths in the planes xy and xz

used in the present paper is shown schematically in Fig. 1. The rheological model consists of two components
connected in series. The first component — Hooke’s element — is connected to the second component by means
of two Hooke’s elements which work in parallel and are connected to Saint Venant’s elements. The force arising
in the first elastic element of the model characterizes the hydrostatic stress in the material. The forces arising in
the parallel elastic elements are the interaction forces between the octahedral formed in the material by systems
of orthogonal sites in which the principal shear stresses act. The relative displacement of the octahedra and the
plastic deformation of the material in the loading direction occur in these planes.

Given the characteristics of an elastically isotropic material and its deformation properties, one can construct
the deformation model of the material according to the mechanical scheme shown in Fig. 1. Here by the deformation
characteristics of the material is meant the conventional elastic and yield limits. These characteristics are determined
in tests as stress–strain parameters at the boundaries between the states of elastic strain and partial plasticity and
between the states of partial and full plasticity of the material. The state of partial plasticity of the material exists
as a transitional state in which elastic and plastic strains in the parallel elements of the model occur simultaneously.

During extension of a specimen of an elastically isotropic material that originally possesses various deforma-
tion properties, plastic shears occur not simultaneously at the sites of the principal shear stresses.

Let the shear resistance of the material at the sites xy and yx be lower than that at the sites xz and zx and
let the conventional elastic limit σp

x and the conventional yield limit σfp
x be determined from uniaxial tensile tests.

The conventional elastic and yield limits exist if the conditions εp
y = ε∗ and εp

z = ε∗ are satisfied, respectively (ε∗ is
the magnitude of the conventional strain for determining the limit characteristics of the material).

For the deformation of the material whose model is shown in Fig. 1, the following relations hold:
— in the elastic region,

εp
y = 0, εp

z = 0, σx � σp
x;

— in the state of partial plasticity,

∆εe
x = −εp

y, σp
x < σx < σfp

x

(∆εe
x is the increment in the elastic strain in the specified stress range);

— in the fully plastic state,

∆εep
x = −εfp

y , ∆εep
x = −εfp

z , σx � σfp
x

(∆εep
x is the increment in the elastic strain and εfp

y and εfp
z are the increments in the plastic strain for loading

beyond the yield point).
Thus, the total strain can be written as⎡

⎣
εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

⎡
⎣

εe
x 0 0
0 −νεe

x 0
0 0 −νεe

x

⎤
⎦ +

⎡
⎣

−εp
y 0 0

0 εp
y 0

0 0 νεp
y

⎤
⎦ +

⎡
⎣

−εfp
z 0 0

0 εfp
z 0

0 0 εfp
z

⎤
⎦ (6)
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or ⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

⎡
⎣

εe
x 0 0
0 −νεe

x 0
0 0 −νεe

x

⎤
⎦

+

⎡
⎣

∆εe
x 0 0

0 −∆εe
x 0

0 0 −ν∆εe
x

⎤
⎦ +

⎡
⎣

∆εep
x 0 0

0 −∆εep
x 0

0 0 −∆εep
x

⎤
⎦ . (7)

From expressions (6) and (7) it follows that in the material model proposed, the volume change in the elastoplastic
region does not vanish and the coefficients of the transverse plastic strains are determined uniquely: µxy = 1 and
µxz = 1.

3. We study the deformed state of the material subjected to periodic uniaxial loading. For the first loading
by a stress σ1

x, the strains are given by the relations
⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

σ1
x

E

⎡
⎣

1 0 0
0 −ν 0
0 0 −ν

⎤
⎦ if σ1

x � σp
x;

⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

σp
x

E

⎡
⎣

1 0 0
0 −ν 0
0 0 −ν

⎤
⎦ +

3(σ1
x − σp

x)
E(2 − ν)

⎡
⎣

1 0 0
0 −1 0
0 0 −ν

⎤
⎦ if σp

x < σ1
x < σfp

x ; (8)

⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

σp
x

E

⎡
⎣

1 0 0
0 −ν 0
0 0 −ν

⎤
⎦

+
3(σfp

x − σp
x)

E(2 − ν)

⎡
⎣

1 0 0
0 −1 0
0 0 −ν

⎤
⎦ +

3(σ1
x − σfp

x )
E(1 − 2ν)

⎡
⎣

1 0 0
0 −1 0
0 0 −1

⎤
⎦ if σ1

x � σfp
x .

For unloading after the loading beyond the yield limit, formula (8) gives
⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

σp
x − σ1

x

E

⎡
⎣

1 0 0
0 −ν 0
0 0 −ν

⎤
⎦

+
3(σfp

x − σp
x)

E(2 − ν)

⎡
⎣

1 0 0
0 −1 0
0 0 −ν

⎤
⎦ +

3(σ1
x − σfp

x )
E(1 − 2ν)

⎡
⎣

1 0 0
0 −1 0
0 0 −1

⎤
⎦ . (9)

Expression (9) implies that the total strain of the unloaded material includes elastic and plastic strains of
the various elements of the model. It is worth noting that after unloading, the residual strains do not equal to the
plastic strains and the elastic strains are partly irreversible.

Loading by a stress of opposite sign σ−
x = −σ1

x beyond the elastic limit (σp1
x = −α−

i σp
x) and the yield limit

(σfp1
x = −γ−

i σfp
x ) produces the following strains in the compression region:

⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

σp
x + σp1

x

E

⎡
⎣

1 0 0
0 −ν 0
0 0 −ν

⎤
⎦

+
3(σfp

x − σp
x + σfp1

x − σp1
x )

E(2 − ν)

⎡
⎣

1 0 0
0 −1 0
0 0 −ν

⎤
⎦ +

3(σ1
x − σfp

x + σ−
x − σfp1

x )
E(1 − 2ν)

⎡
⎣

1 0 0
0 −1 0
0 0 −1

⎤
⎦ .
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Fig. 2. Curves of cyclic and single deformation σx ∼ εx (a and b) and εx ∼ εy (c and d): 1) cyclically
ideal material; 2) material with strain-hardening in the region of minimum stresses; 3) material with
strain-softening in the region of maximum stresses; 4) single deformation with unloading.

After N deformation cycles with constant parameters of the periodic load, we obtain
⎡
⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎦ =

σp
x

E

(
1 +

N∑
i=1

(α+
i − α−

i )
)⎡

⎣
1 0 0
0 −ν 0
0 0 −ν

⎤
⎦

+
3

E(2 − ν)

[
σfp

x

(
1 +

N∑
i=1

(γ+
i − γ−

i )
)
− σp

x

(
1 +

N∑
i=1

(α+
i − α−

i )
)] ⎡

⎣
1 0 0
0 −1 0
0 0 −ν

⎤
⎦

+
3

E(1 − 2ν)

[
σ1

x − σfp
x

(
1 +

N∑
i=1

(γ+
i − γ−

i )
)]

⎡
⎣

1 0 0
0 −1 0
0 0 −1

⎤
⎦ . (10)

Here α−
i , γ−

i and α+
i , γ+

i are coefficients that determine the compressive and tensile elastic and yield limits,
respectively (i enumerates the loading cycles starting with the first unloading).

For the constant coefficients α−
i = α+

i = γ−
i = γ+

i = 2, from relations (10), we obtain the solution known in
the literature as the Masing principle. For the variable coefficients, we obtain the result known as the generalization
of the Masing theory [4] that describes the behavior of cyclically hardened and softened materials.
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From relations (10) it follows that strain hardening and softening results from a change in the strain charac-
teristics α+

i and γ+
i in the region of maximum stresses of the loading cycle and the strain characteristics α−

i and γ−
i

in the region of minimum stresses.
Figure 2 shows strain curves of a hypothetical material with elastic and strain properties close to those of

a D16AT alloy (E = 7 · 104 MPa, ν = 0.3, σp
x = 250 MPa, and σfp

x = 350 MPa) determined by relation (10). The
axes in Fig. 2a–d are denoted in the same manner as the components of the stress and strain tensors introduced
above.

In Fig. 2, the broken line OA+B+C+D+ is a strain curve for a single deformation by uniaxial tension to
point the C+ with unloading at the point D+ (no external load).

In Fig. 2a and c, the broken line OA−B−c−a+b+c+a−b−c− is a strain curve for symmetric stress cycles of a
cyclically ideal material loaded beyond the yield limit. The broken line originating from the point O represents five
deformation cycles with an asymmetric stress cycle for a material with a variable strain characteristic α−

i , which is
responsible for deformation in the region of minimum stresses.

In Fig. 2b and d, the broken line OA−b−a+b+a− represents strain curves for a cyclically ideal material
loaded by a symmetric stress cycle beyond the elastic limit. The curve originating from point O represents five
deformation cycles with an asymmetric stress cycle for a material with a variable strain characteristic α+

i responsible
for deformation in the region of maximum stresses of the loading cycle.

It follows from Fig. 2 that the calculation results agree qualitatively with the available experimental data.
To calculated strain curves for a real material, it is necessary to obtain additional experimental data on

the strain characteristics of the material α+
i , α−

i , γ+
i , and γ−

i and the stress–strain parameters influencing these
characteristics. These characteristics are a subject of further research.
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